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A binaphthyl-based amino sulfonamide (S)-2 was applied to the direct asymmetric aminoxylation of
aldehydes with nitrosobenzene. The reaction catalyzed by (S)-2 proceeded smoothly to give the aminoxy-
lated product in good yield with excellent enantioselectivity. This method represents a rare example of
the highly enantioselective aminoxylation by a non-proline type catalyst with high catalytic
performance.

� 2008 Published by Elsevier Ltd.
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Figure 1. Binaphthyl-based secondary amine catalysts.
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Scheme 1. Direct asymmetric aminoxylation reaction catalyzed by (S)-1.
Aromatic nitroso compounds are frequently utilized as a nitro-
gen and/or an oxygen source in synthetic organic chemistry,1 and
various catalytic asymmetric reactions, such as aminoxylation,2–5

hydroxyamination,4–7 and the nitroso Diels–Alder reaction8 have
recently been developed by exploiting their unique properties. In
this area, highly enantioselective aminoxylation reactions of alde-
hydes and ketones using nitrosobenzene were realized by organo-
catalysts through the in situ generation of the reactive enamine.3

To the best of our knowledge, however, most of the reported
organocatalysts for the aminoxylation reaction are proline and its
derivatives, and structurally different catalysts have not yet been
studied. Very recently, we have reported a direct asymmetric
aminoxylation reaction of aldehydes with nitrosobenzene by using
binaphthyl-based amino acid catalysts represented by (S)-1
(Fig. 1).9 Although amino acid catalysts of type (S)-110 promoted
the aminoxylation of aldehydes smoothly, they were found to be
less effective in terms of enantioselectivity. Due to the flexibility
of the carboxyl group in (S)-1, the C–O bond-forming reaction is
expected to take place not only on the Re-face of the s-trans-enam-
ine but also on the Si-face of the s-cis-enamine, thereby affording
both (R)-3 and (S)-3 (Scheme 1). As a result, (S)-1 and related cat-
alysts would show moderate enantioselectivity. In this context, we
are interested in the possibility of developing a highly enantiose-
lective aminoxylation reaction using a binaphthyl-based amino
sulfonamide (S)-2, which is known to give a single stereoisomer
predominantly through the s-cis-enamine intermediate in the di-
rect asymmetric Mannich reaction11 and aldol reaction.12 Herein,
we wish to report a direct asymmetric aminoxylation reaction of
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aldehydes with nitrosobenzene by using the axially chiral amino
sulfonamide catalyst (S)-2.
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Table 1
Solvent effects in direct asymmetric aminoxylation of propanal with nitrosobenzene
catalyzed by (S)-2a
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Me

(S)-2 (5 mol %)

solvent, 0 ºC, 2 h
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N

Ph

OH

Me

O
NHPh

NaBH4

EtOH

Entry Solvent Concn (M) Yieldb (%) eec (%)

1 Toluene 1.0 78 98
2 DMF 1.0 47 98
3 THF 1.0 49 98
4 CH3CN 1.0 67 98
5 CHCl3 1.0 86 98
6 CHCl3 0.5 86 98
7 CHCl3 2.0 85 98

a The reaction of propanal (0.45 mmol) with nitrosobenzene (0.15 mmol) was
carried out in the solvent mentioned above in the presence of catalyst (S)-2
(0.0075 mmol) at 0 �C for 2 h.

b Isolated yield.
c Determined by HPLC analysis using chiral column (Chiralpak AD-H, Daicel

Chemical Industries, Ltd).
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Figure 2. Transition state models for the direct asymmetric aminoxylation reaction
and anti-selective Mannich reaction catalyzed by (S)-2.
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Scheme 2. Direct asymmetric Mannich reaction catalyzed by (S)-2.
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We first attempted the direct asymmetric aminoxylation reac-
tion catalyzed by (S)-2 under the optimal conditions for the amin-
oxylation using (S)-1.10 Thus, treatment of propanal with
nitrosobenzene in the presence of 5 mol % of (S)-2 in toluene at
0 �C and subsequent reduction with NaBH4 in toluene/EtOH
furnished the corresponding 2-aminoxy alcohol in good yield,
and excellent enantioselectivity was observed as expected (Table
1, entry 1). We then examined the effects of solvents on the yield
and enantioselectivity, and the results of the reaction using various
solvents are shown in Table 1. Consequently, it was found that
solvents did not affect the enantioselectivity of the present
reaction (entries 1–5). In addition, the enantioselectivity was not
affected by the concentration of the reaction mixture (entries 5–
7). Among solvents we examined, chloroform, in which the highest
yield was attained, was eventually chosen as solvent for further
investigation.

The reactions using other aldehydes were then carried out un-
der optimized conditions, and some selected examples are summa-
rized in Table 2.13 Similar high levels of yield and excellent
Table 2
Direct asymmetric aminoxylation of various aldehydes with nitrosobenzene cata-
lyzed by (S)-2a

O

R

(S)-2

CHCl3, 0 ºC
+

O
N

Ph

OH

R

O
NHPh

NaBH4

EtOH

Entry Cat (mol %) R Time (h) Yieldb (%) eec (%)

1 5 Me 2 86 98
2 5 Et 2 90 97
3 5 Bu 2 92 98
4 5 Allyl 2 92 97
5 5 Bn 2 88 97
6 5 CH2OBn 2 92 97
7 5 i-Pr 2 96 98
8 1 i-Pr 3 77 98
9 0.5 i-Pr 8 70 98

10 0.2 i-Pr 8 49 98
11d 0.2 i-Pr 8 76 98

a The reaction of an aldehyde (0.45 mmol) with nitrosobenzene (0.15 mmol) was
carried out in CHCl3 (150 lL) in the presence of catalyst (S)-2 at 0 �C.

b Isolated yield.
c Determined by HPLC analysis using chiral column (Chiralpak AD-H, Daicel

Chemical Industries, Ltd).
d The reaction carried out at higher concentration (25 M).
enantioselectivity were obtained in most cases (entries 2–6). When
a branched aldehyde 3-methylbutanal was used, the correspond-
ing aminoxylated product was obtained in excellent yield and
enantioselectivity (entry 7). The catalyst loading could be reduced
without loss of enantioselectivity, and good to moderate yields of
the aminoxylation product were obtained with prolonged reaction
time (entries 8–10). The reaction carried out at high concentration
proceeded in good yield even at low catalyst loading (0.2 mol %)
(entry 11).

In all cases examined in this study, the absolute configuration of
the aminoxylated products was determined to be S. Additionally, it
is known that only nitrosobenzene activated by the relatively
highly acidic proton such as carboxylic acid and tetrazole can react
at the oxygen atom to give the aminoxylation product,3 and the
hydroxyamination product is obtained predominantly in the ab-
sence of such an acidic proton.4,6 On the basis of the observed ste-
reochemistry and the characteristic feature of nitrosobenzene, a
plausible transition state is proposed (Fig. 2, left). The nitrosoben-
zene activated and directed by the distal acidic proton of triflamide
group on (S)-2 would approach the Si face of the s-cis-enamine.
Hence, the reaction of an aldehyde with nitrosobenzene catalyzed
by (S)-2 provides the S isomer predominantly.

The results obtained in this study strongly suggest the existence
of the s-cis-enamine intermediate, which reacts with the activated
electrophile on the b-face of the enamine. This observation also
supports the transition state model proposed for the anti-selective
Mannich reaction catalyzed by (S)-2.11 In the presence of (S)-2, the
reaction between 3-methylbutanal and PMP-protected a-imino es-
ter 4 affords the corresponding Mannich product with excellent
anti- and enantioselectivity (Scheme 2). The observed stereochem-
istry is rationalized by the analogous transition state model, in
which the Si face of the a-imino ester approaches the Si face of
the s-cis-enamine as directed by triflamide group (Fig. 2, right).

In summary, we have shown that the binaphthyl-based amino
sulfonamide (S)-2 can be utilized as an organocatalyst in the direct
asymmetric aminoxylation reaction of aldehydes. Further investi-
gations for broadening the synthetic application of this reaction
and efforts toward development of related enantioselective reac-
tions using this catalyst are in progress in our laboratory.
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